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Abstract 

The stat is t ical  t heo ry  o f  X- ray  scat ter ing f rom a crystal  
tha t  is d i so rde red  in one  d i m e n s i o n  is discussed.  The  
state of  d i so rde r  is charac te r i zed  by p robab i l i t i e s  tha t  
different  types  o f  sca t te r ing  e lements  occupy  specif ied 
pos i t ions .  The  effect this  d i so rde r  has on  the  corre-  
s p o n d i n g  ensemble  average  axial  ref lect ions is deter-  
mined .  F in i te  size is expl ic i t ly  a c c o u n t e d  for. Mot i -  
va ted  by  recent  expe r imen t s  on  water  i n t e r ca l a t i on  
in to  th in ,  l yo t rop ic  mul t i l ayers ,  special  c o n s i d e r a t i o n  
is given to systems whose  c o m p o n e n t s  differ  wi th  
respect  to size, bu t  no t  wi th  respect  to the i r  sca t te r ing  
factors.  Focus ing  on  this  case o f  pure  d i s p l a c e m e n t  
d i so rder  in a b ina ry  mixture ,  a r ep re sen t a t i on  o f  the  
scat ter ing f u n c t i o n  in c losed  fo rm is der ived.  The  case 
o f  a r a n d o m  b ina ry  mix tu re  leads to the results  o f  
Hendr i cks  & Tel ler  [J. Chem. Phys. (1942), 10, 147- 
167], and  M6r ing  [Acta Cryst. (1949), 2, 371-377] ,  
whi le  in the  p resence  o f  nea re s t -ne ighbor  corre la-  
t ions ,  a c o n n e c t i o n  is e s tab l i shed  with the t heo ry  o f  
K a k i n o k i  & K o m u r a  [J. Phys. Soc. Jpn (1952), 7, 
30-35].  In  ex tens ion  o f  the i r  t r ea tment ,  systems wi th  
n o n - s t a t i o n a r y  t r ans i t ion  probabi l i t i e s  are investi-  
gated.  The  effects on  the scat ter ing func t ion  o f  con-  
s t ra in ing  c o m p o s i t i o n  f luc tua t ions  are also s tudied .  
Par t i cu la r  charac ter i s t ics  o f  the  scat ter ing func t ion  
are d i sp l ayed  and  discussed.  

Glossary 

Symbol and Equation 
definition no. 

~1 = ( 2 " t r / A ) ( k f - k i ) "  dt 2 

dt l f f  

! = (kf - fq)dl/A above 
B.3a 

Description 

Phase of scattered X-rays 
from spacing of type 1 

Vector normal to scattering 
plane with magnitude dl, 
the thickness of spacing of 
type 1 

Momentum transfer times 
d t over 2~" 
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Symbol and Equation 
definition no. 

W~(k) 3 

Pi(J) 4 

W~ 5 

1W~ (and 2 Wjn) 6 

Bn 9, 11 

B.(k) 32 

P =Pll 4 

q = P22 4 

- P  4 
P= 1 - q  q 

E~ -- exp (i~o l) 11 

E 2 = exp (i~, 2) 11 

Q = ( E ,  0 ) p  11 
0 E2 

f~ = ( 1 - q ) / ( 2 - p - q )  11 

f 2 = ( 1 - p ) / ( 2 - p - q )  11 

A = l - p - q  12 

y=AE, + f2E2 
= g exp(-ifl) 12; B. 2 

~" = trace(Q) 
= pE l + qE2 
= t exp(-ia) 12; B.1 

A = det(l - Q) 
= 1 - ~" - El E: 27ff 

Description 

Probability that in a 
substack of n spacings 
beginning with spacing k, 
exactly j spacings are 
type 1 

Probability that the ith 
spacing in a stack is type J 

Probability that exactly j 
out of n spacings are type 
1 given the first is chosen 
with the stationary 
probability 

Probability that exactly j 
out of n spacings are type 
1, given that the initial 
spacing is type 1 (type 2) 

Generating function of W~ 

Generating function of 
W~(k) 

Transition probability 

Transition probability 

Transition matrix 

Complex exponential of 
phase of scattered X-rays 

Complex exponential of 
phase of scattered X-rays 

Relative abundances 

Relative abundances 

The negative of one 
eigenvalue of P 
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382 STATISTICAL THEORY OF X-RAY SCATTERING 

1. Introduction 

X-ray scattering from one-dimensionally disordered 
crystals was first considered theoretically by Landau 
(1937) and Lifschitz (1937, 1939). At about the same 
time, Hendricks & Teller (1942) interpreted experi- 
ments concerning the hydration of clay minerals. The 
analysis of this problem has been of central import- 
ance in the study of a wide range of structures, includ- 
ing interstratified clays (Reynolds, 1980), alloys 
(Guinier, 1958), face-centered cubic crystalts with 
deformation faults (Hosemann & Bagchi, 1954), and 
graphite intercalation compounds (Maire & M6ring, 
1970; Kim, Fischer, McWhan & Axe, 1986; Huster, 
Heiney, Cajipe & Fischer, 1987). In recent years it 
has been discussed in such diverse contexts as solid- 
state polymerization (Grimm, Axe & Kr6hnke, 1982), 
charge-density wave stacking (Moncton, DiSalvo, 
Axe, Sham & Patton, 1976) and the hydration of 
chalcogenides (Johnston & Frysinger, 1984). Several 
theoretical descriptions have evolved subsequent to 
the work of Hendricks & Teller. These have been 
compared and discussed by Jagodzinski (1987), 
Welberry (1985), Kakinoki (1983) and Kakinoki & 
Komura (1952, 1965), who have developed a concise 
formulation employing transfer matrices. Motivated 
by recent experiments on water intercalation into thin 
lyotropic phospholipid multilayer films (Seul, 1988), 
we have examined in detail the analysis of X-ray 
scattering from a one-dimensionally disordered crys- 
tal of finite size. We have given special attention to 
linear systems containing two components that 
possess identical scattering factors but differ in size. 
When we refer to this situation as an incidence of 
pure displacement disorder, we mean to indicate its 
occurrence as a limiting case converse to that of pure 
substitution disorder, the latter referring to an alloy 
whose components are identical in size but differ in 
their scattering factors (Kakinoki & Komura, 1952; 
Guinier, 1963, §8). While we apply the term crystal 
to such disordered arrays, it must be borne in mind 
that this type of imperfection generally destroys long- 
range order (Guinier, 1963, §9). 

Our analysis was motivated by attempts to develop 
an intuitive understanding of the characteristic line- 
shape of the scattering function for one-dimension- 
ally disordered systems. 

As with the aforementioned treatments of this prob- 
lem, our theoretical analysis examines the ensemble 
average of the X-ray scattering intensity for prob- 
abilistically generated ensembles of stacks consisting 
of a finite number, N, of layers. Within this general 
framework we analyze the effect of various probabilis- 
tic rules on the ensemble average X-ray scattering 
intensity. 

Each specific probabilistic rule dictating the con- 
struction of a stack corresponds to a state of disorder. 
Using generating functions, we derive the X-ray scat- 

tering function for the case of a binary mixture with 
pure displacement disorder and nearest-neighbor- 
layer correlations. In particular, we recover for the 
random layer sequence the well known results of 
Hendricks & Teller (1942) and M6ring (1949). A 
direct connection with the theory of Kakinoki & 
Komura (1952, 1965) is established when applying 
their prescription, which is a stationary Markov chain 
with neighbor-dependent transition probabilities. 
Pertinent characteristics of the scattering function line 
shape are displayed and discussed. Here we are 
guided by recent experiments on water intercalation 
into thin lyotropic multilayers (Seul, 1988; Seul & 
Eisenberger, 1989). We examine both random and 
nearest-neighbor-correlated sequences and then turn 
to more general layer sequences characterised 
by position-dependent composition probabilities. 
Finally, we also investigate the effect of constraining 
fluctuations in layer composition. 

2. General formulation 

Consider a one-dimensional array, a stack, containing 
N planar layers. We discuss a system in which there 
are two possible spacings, the distances between the 
scattering planes in adjacent layers. The configuration 
of the spacings in the stack is specified by the vector 
i = ( i l ,  i2 , . . . , iN_l) ,  where ijc{1,2}. The X-ray 
scattering intensity, IN, from the stack is 

N 

IN = ~ V~ exp[i27r(f t f-k,) .rj /A] 
j = l  

N 

× E V* exp[--i27r(f~y--f~,).rk/A]. (1) 
k = l  

In (1), Vt is the form factor of a layer of composition 
I (James, 1982), and V/* is its complex conjugate; N 
is the number of layers; ki and kf are unit vectors in 
the directions of incidence and measurement; A is 
the X-ray wavelength; and rm is the position of the 
scattering plane of layer m. By rearranging the double 
summation in (1), it is seen that only the N - 1  
spacings between the scattering planes enter the scat- 
tering intensity. If we also define 

where dt is a vector pointing along the normal to the 
stack with a magnitude equal to spacing l, (1) becomes 

N N 
V. 2 IN = ~ I i,[ q- 2 Re Y. V,V~ 

j= 1 k > j = l  

Xexp [i~l(2k--2j--o'jk)+ i~2(~rjk +j--k)],  (2) 

with 

k-I  

O)k =- ~ it, 
l=j 
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and the notation Re indicates that one takes the real 
part of the complex number. The factor multiplying 
~pi is the number of spacings of type i in spacings j 
through k -  1. 

To obtain the ensemble average of IN, (IN), one 
sums the product of IN for a given configuration and 
the probability of the corresponding configuration's 
occurrence over all possible configurations. 

With pure displacement disorder, V1 equals V2 
equals V, and (2) can be transformed to 

N - - 1  N - n  n 

(IN)/IVI2=N+2Re ~. ~. ~ W~(k) 
n=l k=l j=0 

xexp[i(j~p,+(n-j)q~2)], (3) 

with W~(k) the probability that in the substack of n 
spacings beginning with spacing k, exactly j spacings 
are type 1. In this way, the probabilities that govern 
the construction of the stack are reflected in (IN). 

In the remainder of this section, we focus on 
nearest-neighbor-dependent transition probabilities 
(Bartlett, 1978). For our binary system this means 
that if the ith spacing has the probability Pi(J) of 
being type J, the probability for the (i + 1)th spacing 
is given by the matrix equation 

p l - p )  (4) (P~+,(1), P~+,(2))=(P~(1), P~(2)) 1 - q  q " 

In (4), p and q are, respectively, the probabilities that 
a spacing of type 1 is followed by a spacing of type 
1, and the probability that a spacing of type 2 is 
followed by a spacing of type 2. 

Previous theories discuss the case where the first 
spacing is chosen with the probability 

P~(1)=(1-q)/(2-p-q), (5) 

the stationary abundance of type 1. Substitution of 
this probability on the right of (4) reveals that it 
generates an eigenvector of the matrix with eigenvalue 
1. However, there is little additional difficulty in treat- 
ing the more general situation where P~(1) is 
arbitrarily specified, as will be seen below. The advan- 
tage is that one can predict (IN) for stacks with an 
independently specified initial spacing. 

It is convenient to define two probabilities I W~ 
(and 2 W~) that are respectively the probabilites that 
exactly j out of n spacings are type 1, given that the 
initial spacing is type I (ty. pe 2). We have the following 
relationship with the W~(k) appearing in (3): 

W~(k)=Pk(1)'W~+Pk(2)2W~. (6) 

The advantage of this decomposition is that one 
has an explicit formula for Pk (1), the probability that 

spacing k is type 1, as a function of p, q and P~(1) 
(Feller, 1968): 

1-q (p+q-1)  k-~ 
P k ( 1 ) - - - - 4  2--p--q 2--p--q 

x{(1-p)P~(1)-(1-q)[1-P~(1)]}. (7) 

This formula is derived using the eigenvectors and 
eigenvalues of the transition matrix in (4), the latter 
being 1 and p + q - 1. Substitution of (6) and (7) into 
(3) allows the summation on k to be performed. The 
result is 

N - - I (  
(IN)/IV[ 2= N + 2 R e  Y'. exp(imp2)(N-n) 

n=l 

x ~ W~ exp [/j(~l - ~2)] 
j=0 

+ {(1 - p ) P ~ ( 1 ) -  (1 - q ) [ 1  - PI(1)]} 

x [ 1 - ( p + q - 1 )  N-'] 

x ~ (lW{,-2W{,)exp[ij(cp,-cp:)]), 
j=0 

(8) 
with WJ~ equal to the probability that exactly j out 
of n spacings are type 1, given that the first spacing 
is chosen with the probability shown by (5). Defining 

B,,-- ~ W{,exp{i[j~o,+(n-j)~p2]}, (9) 
j=0 

and using generating functions for the probabilities 
1WJ~ and 2 Wj, we obtain the result 

N-1 
(IN)/IVI2=N+2Re Z [(N-n)B,,+Cn], (10a) 

rl=l 

with 

B. = [(1 - p )  exp (i~o2) + (1 - q) exp (i~o,)](a~_- a~_) 

x[(2-p-q)(a+-a_)] -1 

+(1 - p - q )  exp [i(qh + tp2)](a+-' - a "-1) 

x ( a + - a _ )  -1 (10b) 

and 

Cn = {(1 - p ) P I ( 1 ) -  (1 - q ) [ 1  - P~(1)]} 

x [ ( 1 - ( p + q -  1)N-n)/(2--p--q) 2] 

x [exp ( icp,)-exp (i~2)](ag - a~)/(a+ - a_), 

(10c) 

given that 

a± =½( p exp (kp~)+q exp (i~2) 

+{[p  exp (i~1)+ q exp (kp2)] 2 

+ 4(1 - p - q) exp [ i(~1 + ~2) ]}1/2). (10d) 
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The derivation of these formulae is sketched in 
Appendix A and examined from a different vantage 
point in the next section. 

For some applications, it may be of interest to 
perform the geometric summations in (10). Examples 
are discussed in later sections. In general, however, 
(10) suggests that peaks in (IN) Occur when a+ or a_ 
are real. This point will be given further consideration 
in § 6. Unless explicitly stated otherwise, we assume 
the first spacing to be chosen according to (5) and 
therefore that C, equals zero. Since C, is the reflection 
of a constrained 'edge' spacing, (IN) will ordinarily 
have its dominant contribution from the B,. 

3. Connection with Kakinoki & Komura's analysis 

Kakinoki & Komura (1965) developed a transfer- 
matrix formalism for the numerical evaluation of the 
scattering intensity (IN) that has been demonstrated 
to have wide applicability to the interpretation 
of scattering experiments on one-dimensionally dis- 
ordered structures (Kakinoki, 1967; Komura & 
Kitano, 1977; Huster et al., 1987; Seul, 1988). While 
generally not yielding a closed-form solution for (IN), 
the theory is completely general insofar as it places 
no restrictions on the number of different components 
contributing to disorder or on the range of interlayer 
correlations. However, two important assumptions 
are made. These are, firstly, that the probabilistic rule 
to generate an ensemble of configurations may only 
be a Markov chain with stationary neighbor-depen- 
dent probabilities (Bartlett, 1978), and, secondly, that 
the first spacing may only be chosen at random; that 
is, its probability to be type 1 equals its stationary 
abundance. 

In this section, we examine how the analysis given 
by Kakinoki & Komura (1965) and equivalent ones 
(Kakinoki, 1967, 1983) relate to our treatment. As 
expected, we establish that in the case of a binary 
crystal exhibiting pure displacement disorder with 
nearest-neighbor correlations, the theory of Kakinoki 
& Komura yields (10), if we take C, = 0. 

In subsequent sections, we will employ (3) to 
investigate more general probabilistic prescriptions 
for the construction of stacks and the resulting scatter- 
ing functions. In the remainder of this section, we 
give an alternative derivation of (10b) by evaluating 
the Bn according to their definition as stated by 
Kakinoki & Komura (1965). Thus, the appropriate 
starting point is the expression 

B " = t r a c e { (  11 l l ) ( f l  ~ )  

x I ( E  , E02)(lPq l q p ) ] " }  ( l l a )  

o r  

Bn=trace[(  I 
where f l = ( 1 - q ) / ( 2 - p - q )  and f2= ( l - p ) /  
( 2 - p - q )  are stationary abundances of type 1 and 
type 2, respectively; El = exp (hpl) and E2 -- exp (iq02). 
Note that f~ is identical to P~(1) of (5). The transition 
matrix given in (4), which appears again on the right 
of (11), is denoted by P, while Q is defined to be the 
product of the matrix containing E, and E2 with P. 

First, we establish the representation 

B,, = "yS._,(z)z"-~ + hE1E2S.-2(z)r "-2, (12) 

in terms of the combinatorial sums* 

S,,(z)=t"~2] ( n - J ~ z  j. (13) 
j=o j / 

In (12) and (13), we have introduced z for trace (Q) 
and 7 for B,=f~E~+f2E2, while h represents I - p - q ,  
the negative of an eigenvalue of the transition 
matrix P. Equation (12) will be shown to hold for a 
particular choice of the variable z. 

To obtain (12), we begin by casting Q in the form 

(pE, q E , ~ + h ( 0  % )  (14) 
Q= kpE2 qE2] E2 

from which it is readily established that 

Qn = r / .Q+ Knl. (15) 

Complete induction on (15) yields the recursion 
relations satisfied by the r/. and K. : 

rl,.+ a = rlmr + rlm_ a h E1E2 ( 1 6 a )  

Km+l = r lmAE1E2 . (16b) 

Equations (16) hold for m ->2 with r/~ = 1, r/2 = r, and 
K~ = 1. Combining ( l lb) ,  (15) and (16), we find 

B,, = 7?,,7+ rI,,_~AE~E2 , (17) 

and, by employing (16), a useful recursion relation 
for B. : 

B, = T B n - I  "4- hE1E2B,-2, (18) 

valid for n->2, with Bo=l  and B,=3,. As before, 
r=trace(Q)=pE~+qE2. The iteration of (18) 
immediately yields (12), if we let z = A E~ E2/r 2. 

* We note that S,,(z) is the hypergeometric function, tFo(a; z), 
with a = n - 2 j +  1: 

[n/2]  
S . ( z ) =  ~ ( n - 2 j + l ) j ( z J / j ! )  

1=0 

-,t%(n-2j+l; z), 

where, for any k ~ R ,  ( k ) ~ = k ( k + l ) . . . ( k + j - 1 )  (e.g. Slater, 
196o). 
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Next, we establish the identity 

(1 + 6)n+l-- (1 -- t~) n+l 
S,(z)  = (19) 

2 " [ ( 1 + 6 ) - ( 1 - 6 ) ]  

for the sum defined in (13). Here, 

3 = (1 +4AE1E2/'r2) 1/2. 

To obtain (19), note that the recursion relation for 
the B, implies a similar identity for the S, by virtue 
of (12). Thus 

S,,(z) = S , ,_ , (z )+ zS._2(z).  (20) 

The generating function, T(z,  r) --- ~oo S,,(z)'r", then 
n = 0  

satisfies the identity 

r ( z ,  r) = ( 1 -  r -  zr2) -1, (21) 

as follows readily from (20). Partial-fraction expan- 
sion of (21) (see also Riordan, 1968; problem 7 of 
ch. 2) leads to (19). 

Noting that in terms of the notation introduced in 
this section, a+ of (10) may be written in the form 

a+ = ½"r(1 + 6), (22) 

we may combine (12) and (19) to obtain the 
expression for the B, given in (10b): 

n __ n n--1  --1 
O~+ O~_ Or+  - - O g  n_ 

B. = 7 - -  q-AE1E2 (23) 
Ol+ - -  Ol_ 0l+ - -  Ol_ 

4. Special cases 

In the following three limiting cases the B. have a 
particularly simple form. 

( a ) Perfect superlattice ordering 

p-->0, q - - > 0 : f l = f 2 = ½  and h = l ,  
for n ->2, B, = B,_2E1E2, leading to 

Bs~ : (El E2)" 

B 2 n +  I s . L  = ½ ( E l  + E2)(E1E2)". 

r = 0. Then 

(24a) 

(24b) 

( b ) Complete segregation 

p --> 1, q --> 1: here we have A --> 1, r --> E1 + E2. From 
(18), B , = B , _ I ( E I + E 2 ) - B , - 2 E 1 E 2 ,  for n->2. It 
readily follows by induction that 

BCS= f,E'~ + f2E~. (24c) 

(c) Random stacking 

p = l - q = f l ,  q = l - p = f : :  since A = 0 ,  we have 
B,  = rB,_l ,  and, with B0 = 1, 

B~ s =r". (24d) 

The W~ are binomial in this case. 

5. Finite system size 

Following Kakinoki & Komura, the contributions 
from B. to (IN) may be divided into two parts, given 
a non-vanishing determinant of I - Q ,  I being the 
identity matrix: 

<IN>/IvI== N D +  H. (25) 

Performing the geometric series, (10a), to evaluate 
(IN), using (10b) or (23) for B,, and collecting terms 
multiplied by N gives 

D = l + 2 R e [ ( A E 1 E E + y ) / ( 1 - a + ) ( 1 - a _ ) ] ,  (26) 

and the remaining terms comprise H: 

H = 2Re {(a+ - o1~_) - 1  

x [ ( a  m+ - 1)(1 - a+) -2(a+y  + AEIE:) 

- ( a N - 1 ) ( 1 - a _ ) - E ( a _ 3 / + A E ,  E:)]}. (27) 

H has an additional term, from (10c), if the C, are 
not equal to zero. Note that D is independent of N;  
whereas, so long as neither a+ nor a_ equal unity, 
H is bounded and has some residual N dependence 
and a finite limit as N goes to infinity. The value of 
N for which it is a reasonable approximation to 
discard H is a function of the parameters p, q, qh 
and ~2, as can be ascertained from subsequent figures. 
Generally, it is clear that, when the limit exists, D is 
defined to be the limit of ( I N ) / N  as N goes to infinity 
and H is defined to be ( IN)--ND.  

We also note that 

H = - 2 R e  ( l / A )  E [ ( 1 - r ) B , + B I + , ]  
n = l  

[Kakinoki & Komura (1965); their equation (36)]. 
Here, a denotes the determinant of I - Q ,  given by 
A = 1 - r - AE1E2. Defining the summand of the latter 
equation to be H, ,  the recursion relation, (18), 
immediately yields 

H,, = "rH,,_l + AEIE2H,,-2, 

valid for n -  2 with 

H o -  - 2 R e [ ( I / A ) ( I  - r +  3/)] 

HI -- -2Re[  ( 1 / A )(3/+ AEl E2) ]. 

In the remainder of this section we show that the 
equations given by Hendricks & Teller (1942) and 
M6ring (1949) for D and H, respectively, for a ran- 
dom stack can be obtained from (26) and (27). In 
the random stacking limit, a + =  r and a_=O.  In 
Appendix B a polar representation is introduced for 
the complex quantitites appearing in (26) and (27), 
and it follows from (B.3) with r = y, h = 0 that 

1 - t 2 
Dgs = 1 - 2 t  cos a + t 2' (28) 

where r = t exp ( - i a ) ,  as detailed in Appendix B. In 
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the r a n d o m  s tacking limit,  t o f  (B . l b )  assumes  the  
fo rm 

t = [ 1 - 4 p ( 1 - p ) s i n 2 ½ ( ~ o , - ~ o 2 ) ]  '/2. (29) 

M6ring (1949) was the  first to take p rope r  accoun t  
o f  finite size effects in the  r a n d o m l y  s tacked  layers. 
E m p l o y i n g  the  polar  r ep resen ta t ion  i n t r o d u c e d  in 
A p p e n d i x  B, we ob ta in  

H Rs = {2t[2t  - (1 + t 2) COS a ] [  1 - t N cos ( N a )  ] 

- 2 t  N+~ sin (Nee)(1 - t 2) sin a} 

x ( 1 - 2 t  cos or-I- t2) -2. (30) 

As p o i n t e d  out  by M6ring,  the  Laue func t ion  is 
r ecovered  f rom H Rs in the  l imit  t ~ 1. 

6. Characteristic features of the scattering function 

The  scat ter ing func t ion  for a b inary  stack o f  N layers 
with n e a r e s t - n e i g h b o r  cor re la ted  spacings  exhibi ts  
character is t ic  features  d e t e r m i n e d  by the  t rans i t ion  

:::::::::::::::::::::::::::::::::::: < f i : O J ~ -  

\ 

F"- %,, 

I \  .-" ,, 06"  SEPARATION ~'0 

J _ , " " ' , 4  S U P E R L A T T I C E  " ~ p , ,  J 

p 

Fig. 1. Parameter-space map of the nearest-neighbor correlated 
stacking model, spanned by p = p~t, the probability that type 1 
follows type 1 and q = P22, the probability that type 2 follows 
type 2. The relative abundances are f, = (1-  q ) / ( l - p -  q) and 
f2 = (1 -p) / (2  - p  - q) = 1 -f~. Phase separation, or segregation, 
occurs for 2 - p - q  < 1, Le. in the upper fight triangle; superlat- 
tice ordering, leading to alternating layer sequences, is favored 
for ( 2 - p -  q)> 1, Le. in the lower left triangle. The locus of all 
random stacking sequences is the diagonal 2 - p - q  = 1 =p + q, 
connecting the two pure states. The loci of constant composition 
fl are straight lines of form 1 = [ ft / ( 1 - f t  )] P + ( 1 - 2f~)/( 1 - f t  ), 
some of which are indicated. The upper and right edges represent 
the loci of pure states 2 and 1, respectively. All lines of constant 
composition end in the neighborhood of the point p =q = I. 
This point itself, however, is included only by the diagonal p = q, 
the locus of equi-abundant sequences. Note the reflection sym- 
metry of the map with respect to this line. 

probabi l i t ies  p and  q. In this sect ion we show h o w  
the l ineshape ,  desc r ibed  by such at t r ibutes  as l ine 
width ,  p e a k  pos i t ion ,  a symmet ry ,  and  p e a k  separ-  
at ion,  evolves  as p and  q are sys temat ical ly  var ied  
t h o u g h o u t  the  range  0-< p, q <- 1. Emerg ing  t rends  are 
d i scussed  in light o f  the  previous ly  de r ived  results. 
We focus first on systems with p and  q i n d e p e n d e n t  
o f  posi t ion.  We then  ex tend  our  cons ide ra t i ons  to 
p o s i t i o n - d e p e n d e n t  probabi l i t ies .  

We refer  in wha t  fo l lows to p a r a m e t e r  space,  illus- 
t ra ted in Fig. 1. As is apparen t ,  the regions  o f  super la t -  
tice o rde r ing  and  segrega t ion  share  as a c o m m o n  
b o u n d a r y  the  d iagona l  2 - p - q  = 1, the locus of  all 
poss ible  r a n d o m  s tacking sequences .  The  ref lect ion 
symmet ry  o f  the  m a p  abou t  the d iagona l  p = q, the  
locus o f  e q u i - a b u n d a n t  sequences ,  is a c o n s e q u e n c e  
o f  the  s y m m e t r y  o f  the  gene ra t ing  func t ion  B, o f  (9) 
and  (10) with respect  to i n t e r chang ing  p and  q. The  
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Fig. 2. Random layer sequences, p=f~ ,  q=f2 = 1--p. (a) The 
evolution of line shapes (for the 004 maximum) as the composi- 
tion is varied along the diagonal q = 1-p. Each pure state 
exhibits a Laue function (top and bottom panels). Here, c*= 
2zr/d t . (b) and (c) show how peak shift as well as peak height 
and integral peak width depend on p. In (b), relative peak 
displacements between the two pure states are shown. In (c), 
peak heights have been normalized to that of the pure state. The 
solid line representing the peak height as a function of p is an 
exact representation, obtained from equation (31) in the text. 
The integral peak width plotted here is the normalized quantity 
w / w ( p  =0.5), where w is defined in the text. The graphs in (c) 
are mirror-symmetric with respect to the line p = 0.5. For the 
example shown here, i.e. N = 30, d I = 56-5 and d2 = 58.9/~,, the 
integral width of the 004 harmonic increases approximately 
threefold between pure (p=0)  and equi-abundant (p=0.5) 
states. 
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loci of constant composition are straight lines ending 
at the point (1, 1). 

6.0. Random stacking sequences 

We start by giving detailed consideration to random 
stacking, where q -- 1 - p .  As p is varied from 0 to 0.5, 
the composition of a stack changes linearly from pure 
type 2 (upper left-hand corner of map) to equal 
abundance of types 1 and 2 (center of map). Fig. 2(a) 
illustrates the evolution of the line shape. Figs. 2(b) 
and (c) " summarize the composition dependence of 
the line width and the peak intensity. 

From the observation made in connection with 
(24d), namely that in the random stacking limit B, 
is the generating function for the binomial distribu- 
tion, the approximate linear peak shift may be 
attributed to the linear composition dependence of 
the mean of that distribution. 

To discuss the behavior of the line width, we first 
define the integral peak width in the usual way 
(Guinier, 1963), i.e. 

w-/~l(i,,,>, 
where /~ and (IN) represent the integrated and the 
peak intensity, respectively. If we let l denote a 
suitable range of integration, e.g. the period set by 
d~/(d2-d~), I:~ may be defined as 

T 
I~ = ( 1 / h  J" (IN)all. 

0 

Iz is of order N, independent of composition. This 
result holds for all stacking sequences in the limit of 
pure displacement disorder.* 

The peak position is found from the condition that 
all B, are real, so that exp ( - in  a) = 1, or a = 0, 2zr, 
4zr, . . . .  Hence, from (24d), (10) reads: 

N - - I  A 

(IN) = s + 2  ~ ( N - n ) t  ~, 
n = l  

which may be evaluated without difficulty to yield 

(I~)=[S(1--t2)--2t+2tN+~](1--t)  -2. (31) 

As expected, in the pure state, (I~) is of order N 2. 
This is verified by expanding (IN) in terms of e = 1 - t, 
yielding (IN)-- N2[1 - ( N / 3 ) e ] ,  provided 1 >> Ne or 

* This follows from the evaluation of the integral 
[ 

(1/T) S 2Re{B,} d/, 
o 

which is readily accomplished by recourse to the representation 
of B, given in (9). The resulting integral, 

(2/[ )  S cos ~ol[j+x(n - j ) ]  d/, 
o 

with x = ~02/~0~, is of  the order 1/ l 'and can thus be made arbitrarily 
small. Hence, the only contribution to I~ is of  order N, resulting 
from the constant term in (10). 
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Fig. 3. Random stacking. Dependence of integral peak width of  
the 004 harmonic on momentum transfer 1 = qz/c*, where c*= 
21r/d I. In (a),  N =30, d~ = 56.5 and d2=58-9 A, parameters 
relevant to phospholipid multilayers (Suel, 1988). In (b), N = 30, 
d t =9.045 and d 2 = 11.85 ~ ,  spacings encountered in a study of 
Nal/3(H20)yTaS2 (Johnston & Frysinger, 1984). (c) The line 
shape of the 003 peak, with p = 0.2, an example of a random 
stack generating an asymmetric line shape. In both (a) and (b), 
values of  w near the maxima of the curves for p =0.5 are ill 
defined due to substantial overlap of adjacent harmonics; the 
corresponding points have therefore been omitted. Lines are 
guides to the eye. 
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t>>IE-(1/N). The solid line through the points 
[p, (IN)] (see Fig. 2c) is obtained by evaluating <I~> 
of (31), using t at the peak position as obtained from 
(29). 

The dependence of w and <IN) on the order of the 
harmonic, numbered by the index l, is shown in Fig. 
3. The functional form follows immediately from (31) 
by way of the l dependence of t, recalling the 
definition of w. The oscillatory l dependence of w is 
a hallmark of Hendricks-Teller type disorder (e.g. 
Johnston & Frysinger, 1984; Seul & Eisenberger, 
1989). It may be rationalized as the result of the 
'beating' of the two spatial frequencies, ~o~ and ~o2 > 
~o~. The corresponding beat frequency is set by the 
condition ( l+  1)~o~ = 1~2, or, using the representation 
of t in (29), by. the condition sin 2 ½(q~l- ~o2)= 1. This 
leads to 12rr/d~=(l+l)2rr/d2, or l=d~/(d2-d~) ,  
thus determining the period of the oscillation. For 
the two examples shown in Figs. 3(a) and (b), 
we obtain respectively d l / ( d 2 - d ~ ) - 2 4  and 
dl/(d2 - dl) - 4. It is important to note that the depen- 
dence of w on I contains information about the rela- 
tive abundance of components, which determines the 
amplitude, tmax = 1--4p(1--p),  as well as the differ- 
ence in their spacings - which determines the period 
of the oscillation. This is a valuable tool for the 
analysis of experimental data. If this oscillation is 
slow, as depicted in Fig. 3(a), the line shapes appear 
symmetric. This follows as long as the modulus t" of 
B,, = t" exp ( - in  a) varies slowly over the width of a 
given peak. The phase factor of B,, 2 cos ha, is of 
course always symmetric with respect to a = 0, 27r, 
4rr, . . . .  Under most conditions, the line-shape asym- 
metry is not expected to exceed the extent illustrated 
in the example displayed in Fig. 3(c). Fig. 4 displays 
the dependence on system size of the integral peak 
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Fig. 4. Random stacking. The evolution of the integral peak width 
(normalized to that of a five-layer stack) with system size is 
displayed for the 001,004 and 008 peaks in an equi-abundant 
(p = 0.5), and for the 004 peak in a pure (p = 0) system. Finite- 
size effects are noticeable up to at least N = 50. In these examples, 
d I = 56-5, d 2 = 58-9A. 

width of several harmonics and documents noticeable 
finite size effects up to at least N = 50. 

6.1. Nearest-neighbor correlated stacking with 
stationary transition probabilities 

In discussing correlated stacking sequences, it is 
natural to distinguish the regimes of segregation, 
located in the upper right triangle of the map 
exhibited in Fig. 1, and of superlattice ordering, in 
the lower left triangle. In the former, layers of equal 
type attract one another, while in the latter they repel. 
The analogy to ferromagnetic and antiferromagnetic 
ordering of the one-dimensional Ising model may be 
called upon to provide a physical interpretation of 
the transition probabilities, Po. This is suitably accom- 
plished by inspection of the transfer matrix describing 
the Ising chain (e.g. Huang, 1963): 

pis i ,g=(exp[ f l ( j+h)]  exp ( - f l j ) )  

\ exp( - f l j )  e x p [ f l ( j - h ) ]  " 

Here j denotes the exchange interaction and h an 
externally applied magnetic field while, as usual,/3 -- 
l /kT.  The matrix elements represent the statistical 
weights assigned according to a Boltzmann distribu- 
tion to the occurrence in the chain of spin pairs of 
the form 1'1', ~ ,  1'$ and ~,1'. These weights correspond 
in the system under consideration to the probability 
densities, no, of the four possible types of junctions. 
These are: nil =flP, n22 =f2q, nl2 =fl(1 - p ) ,  and n21 = 
f2(1 - q) = n~2. As usual, the chain is made cyclic by 
including a junction between the last and the first 
layer. We thus have the following correspondences: 

f~p ~- (1/S) exp [fl(j + h )] 

f2q = (1/S) exp [ f l ( j -  h)] 

f,(1 - p ) = f 2 ( 1 - q ) " - ( 1 / S )  exp (-f l j) ,  

where S = exp[fl ( j+  h)]+exp[ f l ( j -  h)]+2exp(- f l j ) .  
The strength of the applied magnetic field determines 
the magnetization, i.e. the abundance of the two types 
of spins in the Ising chain. That is, 

nlln2~ p (1 - q )  
= - -  - exp (-2/3h). 

nl2n22 ( I - p )  q 

The exchange interaction directly corresponds to the 
specified strength of interlayer correlations. Thus (e.g. 
Kasteleyn, 1971), 

nlln22 P q 
= -- exp (4/3j). 

nl2n21 1 -  p 1 -  q 

This quantity diverges in the ferromagnetic limit, 
j > 0, T ~ 0, or p ~ 1, q ~ 1. The number of junctions 
between identical types of layers approaches f~ N or 
f2N and diverges with N ~  oo. In the antiferromag- 
netic limit, j < 0, T ~  0, or p ~ 0, q ~ 0, analogous 
conclusions hold for the number of junctions between 
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different types of layers. The random stacking limit 
is seen to correspond to setting j =0: the quantity 
nlln22/n12n21 equals unity. In this limit, the length of 
substacks of pure component 1 or 2, i.e. the cluster 
size, approaches N as p or q approach unity. 

According to (10) the scattering function, (IN), for 
nearest-neighbor correlated sequences of a binary 
stack of N layers is determined by two eigenvalues, 
or+. Inthe foregoing, the discussion of random stack- 
ing already profited from the inspection of the roots 
of Im (a+), the single non-trivial eigenvalue in that 
limit. Indeed, a favorable approach to the exposition 
of the salient features exhibited by (IN) throughout 
the range 0-< p, q <-1 is suggested by consideration 
of the roots of the imaginary part of both a+ and a_. 
In this general case, contributions to (IN} arise from 
both a+ and a_ and the line shape o f ( I s )  must reflect 
the presence of two components, Re (a+) and Re (a_) 
evaluated at positions of vanishing Im (c~+) and 
Im (a_). 

In Fig. 5(a) we have plotted Im(a+) and Im(a_) 
versus momentum transfer, for particular choices of 
d l ,  d 2 and N; evaluating functions for a number of 
points along the diagonal p = q of the parameter space 
of Fig. 1. Importantly, the node positions remain 
essentially unchanged for 0 - < p - 0 . 5 ,  while finite 
separations evolve in the regime of segregation, 

specifically for p -> 0.6. Implications for the actual 
line shapes may be ascertained from Fig. 5(b), which 
documents for the 004 peak the eventual evolution 
of two resolved peaks in the regime of segregation. 

Fig. 6 displays the behavior of the node separation 
throughout parameter space. Note that we have 
chosen to display the absolute value of the separation, 
rather than the separation itself, to obtain a surface 
that is symmetr ic  rather than antisymmetric with 
respect to the line p = q. 

Asymmetric line shapes are expected when p # q, 
reflecting unequal contributions of a+ and a_. A 
representative sample of shapes is displayed in Figs. 
7 and 8. 

6.2. R a n d o m  stacking with posi t ion-dependent  
abundance  

We now extend the discussion of the previous 
section to stacking sequences characterized by a posi- 
tion-dependent composition, focusing attention on 
the random stacking limit. In the context of the pre- 
viously discussed one-dimensional Ising model, this 
situation corresponds to the application of a spatially 
varying magnetic field to the disordered phase. 

We treat this problem on the basis of the general 
formulation of §2. Equation (3) represents a 
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Fig. 5. Nearest-neighbor correlated stacking. (a) 
The behavior of Im (a+) and Im (a_) of equation 
(10) of the text along the diagonal p = q. The roots 
of these functions mark all possible peak positions. 
In the example, N = 30, d2/d~ = 1.04278. (b) The 
evolution of the 004 line shape along the line p = q. 
Here, d~ =56.5 and d2=58.9,&. Two resolved 
peaks in the segregation regime merge as p and q 
decrease; in the limit of superlattice ordering, a 
Laue peak with secondary maxima emerges. The 
inset in the top panel of (b) shows the position of 
the displayed scans in the parameter-space map 
of Fig. 1. The bottom panel in (b) summarizes the 
behavior of integral peak width, if, and peak shifts, 
t~. The reduced quantities plotted here are defined 
as follows: f f=[w(p) -w(p=O)] / [w(p=O.5) -  
w(p=0)] and t~=(~-~2)/(t~2-t~l), where t~ 
indicates a peak position, i.e. ~ = 2zr/d~ and q2 = 
27rid 2. Here, solid lines are guides to the eye. 
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convenient starting point because it contains a posi- 
tion-dependent probability distribution, W~(k). The 
corresponding position-dependent generating func- 
tion B,(k) is defined in analogy to (9) as 

B,(k)-exp(in~2) ~ WJ,(k)exp[ij(q~,-g~2)], (32) 
j=0 

and, with reference to (3), 

N - 1  N - n  

<IN)/IVI2= N + 2  Re ~ }-'. B.(k). 
n=l k=l 

The absence of correlations permits us to rewrite 
B,(k) as a product of the 'probabilities, f ( j ) ,  that 
spacing j is type 1. Thus, 

k + n - 1  

B , ( k ) =  1-I {f(j) exp(i~p1)+[1-f(j)]exp(iq~2)}. 
j = k  (33) 

Although we have not investigated the full range 
of possibilities of this model, we have evaluated the 
scattering function given above with B,(k) of (33) 
using three functional forms for the position depen- 
dence of f, an exponential, a step and a Gaussian 
profile. To compute the B,(k), we start with the 
BN_,(1) from which we generate BN-2(1) and 
BN-2(2) etc., minimizing the number of multiplica- 
tions and divisions. The resulting computation is 
efficient and requires of the order of N 2 operations 
to compute IN; a Fortran program is included as 
Appendix C. 

To facilitate a meaningful extrapolation from the 
case of stationary transition probabilities discussed 
above to the cases under consideration here, the 
parameters defining each profile are constrained in 
such a way that the resulting sequences yield the same 

average abundance. That is, for a set of specified 
parameters, the different profiles generate stacks of 
identical average composition which differ only in 
their spatial distribution of the available layers of 
type 1 and type 2. The three profiles of interest specify 
the abundance at position k in the stack as follows 
( 0 -  < k < - N - 1): 

f (k )  = f(0)exp (-k/A ) (34a) 

f(k)=f(O)exp(-k2/o "2) (34b) 

f (k)= f(O)H(l-k).  (34c) 

Here, f(0) is the probability that the first layer is of 
type l; in (34c), H denotes a step function, i.e. H(j) = 
0 for j<- 0, H(j) -- 1 otherwise. Defining an average 
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sponding to the line shapes are indicated in the insets, which 
refer to the parameter-space map of Fig. 1. Plots along the 
following diagonals are shown. In (a): 2 - p - q  = 1.5; in (b): 
2 - p - q = 0 - 5 .  
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composition f as 
N - 1  

f = ( 1 / S )  r, f ( k ) ,  (35) 
k = 0  

we obtain for the exponential profile 

f =  (1/N)f(O)SN(A ), (36a) 

where 

1 - e x p ( - N / h )  
SN(A) = 1 - e x p ( - 1 / h )  " (36b) 

We now determine cr for the Gaussian and l for 
the step profile such that f is identical for all three 
profiles. For the Gaussian, t7 was determined numeri- 
cally from the condition 

N - 1  

exp(-kE/cr2)=SN(A). (37) 
k = O  

For the step profile, l follows from the condition 

f(O)l + [( S - 1 ) - / ] f ( 0 ) e x p  [ - (  S - 1 )/A ] -- SN(A ). 

(38)  

Each profile is thus characterized by two parameters: 
an amplitude, f (0 ) ,  common to all of them, and a 

decay length, specified for the exponential, and then 
determined by virtue of (37) and (38) for the Gaussian 
and the step profile. 

The introduction of a position-dependent abund- 
ance in the form of the profiles of  (34) in a random 
stacking sequence leads to partial or complete segre- 
gation. As a result, random stacking sequences with 
position-dependent abundance are displaced in phase 
space with respect to the corresponding stationary 
sequence of equal average composition toward the 
regime of segregation, i.e. the upper right triangle of  
Fig. 1. The step profile causes the largest displacement 
because its inherent two-state nature favors complete 
segregation. Qualitatively, random layer sequen- 
ces with position-dependent abundances closely 
resemble the binary nearest-neighbor correlated 
stacking models with stationary transition prob- 
abilities. 

While there exists this qualitative similarity, we 
note that most sequences generated by both Gaussian 
and exponential abundance profiles cannot be dupli- 
cated by a binary correlated stacking model.  The 
reason lies in the fact that the new line shapes no 
longer have a representation in terms of only two 
complex eigenvalues, a± of (10). As a result, the line 
shapes acquire characteristic features such as those 
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constant composition with f~ = ~, f2 = 3. Actual profiles are drawn for (p = 0, q = 0-67), (0-25, 0.75), (0.75, 0.417) and (0.99, 0.997), 
from top to bottom. In (b): p = 0 . 9 ;  in (c): p=O. 
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displayed in Figs. 10 and 11. The applicability of a 
random stacking model with exponential position 
dependence has been recently demonstrated in the 
analysis of X-ray scattering data obtained on thin 
substrate-deposited lyotropic multilayers. It is inter- 
preted as a consequence of an inhomogeneous distri- 
bution of hydrated states throughout the multilayer 
(Seul & Eisenberger, 1989). 

The presentation of the parameter space map of 
the Gaussian composition profile depicted in Fig. 9 
is chosen to indicate this close relationship with the 
map of Fig. 1: the f axis corresponds to the diagonal 
p = 1 - q  in that figure. The map exhibits contours of 
constant decay length, 3.. The form of the dependence 
of f on h is given by (36). For given f, the tendency 
toward phase separation is noticeably weaker for the 
exponential profile as compared with the step profile. 
The Gaussian profile is seen to be intermediate 
between exponential and step profiles in effecting 

f(k) 1 

f 0 . 6 ~ ~ k  = "  0.8 5 ~ f ( O )  

(~/~ _~ ~ i ~ k 

o o  

1 

ok=5 

• k=10 

k=19 

• k=50 

k = 100 
o X= 500 

Fig. 9. Parameter-space map for position-dependent random stack- 
ing. The orientation of the map with respect to that of  Fig. 1 is 
intended to highlight the fact that the introduction of a position- 
dependent abundance induces a tendency toward phase separ- 
ation (see text). Thus, the f axis corresponds to the diagonal 
p = ( 1 -  q) in Fig. 1. The coordinates are a decay length, h, and 
an amplitude, f(0) ,  both referring to an exponential profile; A 
is measured in terms of number of layers. The average abund- 
ance, J~ is a function of h and f(0) ,  and is given by (36). The 
map exhibits reflection symmetry with respect to the line f = ½. 
The contours of constant decay length, h, were constructed on 
the basis of  numerical evaluations of the scattering function for 
given f (0 )  and h, by plotting points f(0),  f corresponding to a 
chosen A. As expected from (36), they are straight lines of slope 
SN (A)/N. The map was calculated for the 004 peak, with N = 31, 
d~ = 56"5 and d 2 = 58.9 A. The topography is expected to be 
independent of other choices of these system parameters. The 
inset illustrates an exponential abundance profile and serves to 
define f(0)  and A; the index, k, numbers the layers in the stack. 

enhanced segregation. This is apparent from the series 
of model line shapes generated at constant f(0) and 
plotted in Fig. 10 to illustrate the effect of an increas- 
ing decay length. Fig. 11 exemplifies the effect of 
changing the amplitude f(0) while maintaining the 
decay length constant. 

6.3. Non-stationary nearest-neighbor correlated 
stacking 

In § 2 we show that the general scattering function, 
(10), contains a contribution 6", if the first spacing 
is chosen with other than the stationary probability 
given in (5). As shown in (7), the effect of specifying 

4805,, cii-~-- q 
X : 50, 

h 

: 0 753 ]f~ 

X: 20. 
240 2~ 

f" = 0 521 :'~ 
i-.- 

z uJ X:15, I.- 
_z 2 4 0 2 3  f ' = 0 4 5 7  ,": 

4 8 0 5 0 t X  = 1 0 , -  
/i= o 524 

550 375 400 425 450 

MOMENTUM TRANSFER (/.=qz/C "*) 

Fig. 10. Position-dependent random stacking. Exemplary line 
shapes of 004 peak in a system with parameters N = 31, d~ = 56-5 
and d 2= 58.9/~,. These line shapes illustrate the effect of  a 
changing penetration depth for exponential ( ), Gaussian 
( - - . - - )  and step ( - - - - - - )  profiles. 

480 50 f ( O ) = l ,  
f = 0 .634 

f(O) =0 75, . 
z 2 4 0 2 3  f = 0 4 7 5  ,{t-'~", 

f ( O l = 0 5  . 
~ n 

240 25 ~- = 0317  J~ 

J ,,, 

3 50 3 75 4 O0 4 25 4.50 

MOMENTUM TRANSFER ( I. = qz/C '* ) 

Fig. 11. Position-dependent random stacking. Exemplary line 
shapes of 004 peak in'a system with parameters N = 31, d~ = 56-5 
and d2 = 58.9/~. These line shapes illustrate the effect of  a 
changing amplitude for exponential ( ), Gaussian ( - - . - - )  
and step ( - - - - - - )  profiles. 
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a 'boundary condition',  (3, # 0, on the conditional 
probability for layer k to be type 1, given that layer 
1 is type 1, decays by the geometric factor (p + q -  
1) k-1. Therefore, the result of choosing other than 
the stationary probability for the first spacing can 
also be thought of as introducing a particular type of 
position-dependent average composition. The contri- 
bution of the (17, to (IN) will be large only if both the 
correlation length associated with the non-vanishing 
(3, is comparable to N and also the magnitude of 
the departure from the stationary probability is of the 
order of 1. Both these criteria are met in Fig. 12, 
which illustrates the effect of C, on (IN) in a situation 
where PI(1) is chosen to equal zero, ( 1 -  q ) / ( 2 - p -  
q), or unity. The (i', allow incorporation of this par- 
ticular type of posit ion-dependent composition in the 
nearest-neighbor correlated stacking model. For 
example, if one chooses q = 1 - p ,  the expected com- 
position in the resulting random stack will exhibit a 
geometric decline from the boundary,  clearly 
equivalent to specifying P~ (1) = f (0 ) ,  and a geometric 
profile for f ( k )  in the previously discussed position- 
dependent random stack. 

6.4. Constrained random stacking 

Another probabilistic rule for constructing an 
ensemble of stacks is obtained by constraining com- 
position in random layer sequences. That is, one 
constrains the total number of spacings of type 1 to 
be J, and the remaining ( N - J )  spacings to be of 
type 2, thereby adjusting the abundance of type 1 to 
be f~ = J~ N. All configurations are equally probable. 
This model may apply when some of the possible 
random stacks do not occur. 

Equation (3) applies in this case, the probability 
density W~ being the hypergeometric distribution 
(Feller, 1968) 

N - J  N , 

675 

450 

225 

0 
4 8  

- -  P~(1)=O 

. . . . . . . . .  P I ( I )  : ( i - q ) / (2 -p -q )  

..... P ~ ( l ) : t  

1:3 

4.9 5.0 5.1 5.2 5.5 5.4 

MOMENTUM TRANSFER (/. = qz/C *) 

Fig. 12. Non-stationary nearest-neighbor correlated stacking. The 
examples illustrate the effect of specifying the initial probability, 
PI(1), to equal 0, ( 1 - q ) / ( 2 - p - q )  and 1. The profiles were 
evaluated for the 005 maximum, with N = 30, p = 0.95, q = 0.9 
and dt/d 2 = 31/32, employing the full version of equation (10); 
c* = 27r/ d I . 

where O<_j<_J<_ N, O < _ ( n - j ) < _ ( N - J ) ;  WJ, gives 
the probability that in a substack of length n -< N, j 
spacings are of type 1. For n > J, WJ, vanishes. As 
there is no k dependence, the sum over k in (3) 
contributes a multiplicative factor ( N - n ) ;  the B, 
can be computed from (9). 

In Fig. 13 we display the result of comparing ran- 
dom and constrained random stacks of the same 
composition. The normalized peak intensity iN = 
<IN) /N 2, plotted as a function of (1 - f , ) = f 2 ,  is seen 
to decrease more rapidly in random stacks. This is 
illustrated by two sets of plots, for N = 30 and N = 
100. The general argument given in § 6.0, stating that 
the integrated intensity is of order N, applies to con- 
strained random stacks. Hence, the composition 
dependence of i% RS-> i Rs implies the integral peak 
width w cRs of constrained stacks to be bounded by 
that of the corresponding random stack. 

The inset to Fig. 13 contains two representative line 
shapes. The signal for the constrained stack dis- 
plays characteristic oscillations. These are gradually 
smoothed as N becomes large ( N  >> J)  and the hyper- 
geometric distribution approaches the binomial dis- 
tribution. In accordance with the identity of the means 
of the two distributions, peak positions coincide. We 
note that the composition dependence of  iN satisfies 
an approximate scaling relation such that the function 
z'CRSN, for a constrained stack of N, layers is well 

-RS approximated by Z N2 for a random stack of N2 < N~. 
This is apparent  from Fig. 13. 

,ooJ 
~z: 8O 

A 
.,,.,= 

v 60 

4O 

450 I ~ N30  

I I.,I J =~z i I II ,=o, 
~ 255 1 / ~  

35 3 75 4 0 4 25 

\ \ ~ ~ _ RANDOM STACKS 

\ o\ " - . . . .~_ o N=3O 

~ CONSTRAINED 
~ RA N_DOM STACKS 

~ ,..- . N.~OO 
v • N -30  a 

I I I I A 0.2 0.3 0.4 0.5 
ABUNDANCE (p)  

Fig. 13. Constrained random stacking. Shown is the decrease of 
the normalized peak height, JN)/N2, o f  a constrained random 
stack (solid symbols) in comparison with that of a random stack 
(open symbols) of equal composition as a pure (p = 0) evolves 
into an equi-abundant (p=0.5) state. The behavior for two 
systems (N=30, N=100), with dr=56-5 and d2=58-9A is 
shown. Also indicated is the behavior of random stacks of 
reduced size approximating constrained random stacks. Corre- 
sponding pairs of random and constrained random stacks are: 
N=70 and N= 100, as well as N = 17 and N =30. The inset 
illustrates characteristic line shapes for a random (- - -) and a 
constrained random ( ) stack of average abundance f~ -- 0-4. 
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7. Summary and concluding remarks 

In this paper we have presented a statistical analysis 
of X-ray scattering probing pure displacement dis- 
order in one dimension in crystals containing two 
components and N unit cells, or layers. The analysis 
relies on a formulation of the scattering problem in 
terms of the probability distributions that prescribe 
the possible layer sequences. Given such a distribu- 
tion, an appropriate ensemble average yields the scat- 
tering function. This formulation is sufficiently gen- 
eral to permit the treatment of a variety of types of 
one-dimensional disorder. 

Detailed consideration was given to the important 
case in which layer sequences are determined by 
nearest-neighbor correlations. Specifically, if the layer 
sequence is specified as a Markov chain with nearest- 
neighbor transition, and random initial probabilities, 
complete eqivalence to the transfer matrix theory of 
Kakinoki & Komura obtains. This problem admits of 
explicit solution for the relevant generating function. 
This serves as a useful basis to rationalize and discuss 
the characteristics of the scattering function, in par- 
ticular its line shape. An extensive exposition of such 
characteristic features was presented. 

Motivated by recent experiments, we have also 
investigated cases of non-stationary transition prob- 
abilities, which reflect a spatially varying distribution 
of spacing in random sequence. The numerical evalu- 
ation of the appropriate ensemble average yields the 
scattering function throughout the parameter space 
pertaining to exponential, Gaussian, and stepped 
profiles of the relative abundance of spacings. The 
calculations reveal a tendency toward phase separ- 
ation shared by all profiles. For given average abund- 
ance, this tendency is found to be least pronounced 
for the exponential. In contrast, a step profile induces 
almost complete segregation, thus closely mimicking 
nearest-neighbor correlated spacing with particular 
stationary transition probabilities. 

The consequences of constraining composition 
fluctuations in randomly stacked layers have also 
been investigated. Comparison of resulting scattering 
functions with those generated by a random stack of 
equal average abundance reveals strikingly 'rippled' 
line shapes and a narrowing of the line width in the 
presence of the constraint. The latter may be rational- 
ized in terms of the variances of the applicable prob- 
ability distributions. 

Mention has already been made of the relevance 
of the theory to the analysis of recent scattering 
experiments in which the adsorption of water into 
thin lyotropic multilayers was found to proceed via 
distinct states of hydration (Seul, 1988; Seul & 
Eisenberger, 1989). 

The availability of results for non-stationary transi- 
tion probabilities may also prove useful in the X-ray 
analysis of such problems as the penetration of a 

'guest' species, deposited on a multilayer of a 'host' 
species of differing size. Such interdiffusion experi- 
ments have, for example, been considered for certain 
block copolymer systems. 

Another field of interest for the potential applica- 
bility of our findings (Prost, personal communication) 
is that of 'frustrated' liquid-crystal phases. As Prost 
and collaborators have shown, a variety of novel 
smectic phases and new critical points arise in a theory 
of the polymorphism of polar liquid crystals, which 
considers smectic ordering with one of two possible 
incommensurate wave vectors, Ik,I = 2~/dl and [k2] = 
2~'/d2 (Prost & Barois, 1983; Barois, Prost & 
Lubensky, 1985). The informed examination by X-ray 
scattering of binary mixtures of appropriate com- 
ponents, the choice of relative sizes permitting the 
adjustment of the incommensurability, would cer- 
tainly be facilitated by the understanding of the 
expected scattering line shapes. 

MS acknowledges the hospitality of the Theoretical 
Biology and Biophysics Group at Los Alamos 
National Laboratory where part of this work was 
carried out. We thank Ms Patricia Reitemeier for 
preparing the manuscript. 

APPENDIX A 

We illustrate the derivation of the generating function 
for the probability 1 W~, which is used to derive (9). 

First, the generating function ~ W (s, t) is defined by 

IW(s,t)=-- ~. t "-I ~W~,s j. (A.1) 
n = l  j = O  

To derive a formula for ~W(s, t), we introduce the 
probabilities ~P~ (and 1Q~) that the first layer is type 
1 and that there are exactly j layers of type 1, and 
that the last layer is type 1 (type 2). 

From (4), these probabilities obey the recursion 

'P(j, n ) = p ' P ( j -  1, n -  1) 

+ ( 1 - q ) ' Q ( j - l , n - l ) + 8 , _ , 8 j _ , ,  (A.2) 

' Q ( j , n ) = q ' Q ( j , n - 1 ) + ( 1 - p ) ' P ( j , n - 1 ) .  (A.3) 

Kronecker deltas appear in (A.2), specifying the ,  
initial layer is type 1. Use of the same rule to form 
the generating functions as given in (A.1) gives 

'P(s, t)=pst'P(s,  t ) + ( 1 - q ) s t ' Q ( s ,  t)+s, (A.4) 

'Q(s, t )=  qtZQ(s, t )+ (1 -p ) t '  P(s, t). (A.5) 

These equations for ~P(s, t) and ~Q(s, t) are solved 
to give 

'W(s, t )='P(s,  t)+ 'Q(s, t) 

s ( 1 - q t ) + ( 1 - p ) s t  
- 1 - ( p s + q ) t - ( 1 - p - q ) s t  2" (A.6) 
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The same procedure gives 

1 -  pst + ( 1 -  q ) st 
2 W ( s , t ) _ l _ ( p s + q ) t _ ( l _ p _ q ) s t 2 .  (A.7) 

Summations over the index j which appear in (8) 
are accounted for if we set our variable s equal to 
exp [ i ( ~ - ¢ 2 ) ] .  To find the summands of index n 
appearing in (8) from the generating functions (A.6) 
and (A.7), one can factor the denominator into two 
terms using the quadratic formula, use partial frac- 
tions, and then the easily obtained coefficient of t n-~ 
is proportional to the summand. Although this 
approach is less direct than the eigenvalue method 
used by Kakinoki & Komura (1952, 1965), it affords 
additional insight into the meaning of the coefficients 
B, and (7, that appear in (9) and (10). 

APPENDIX B 

The results of §§ 3-5 contain the formal solution to 
the problem of evaluating the scattering function, 
(IN), defined in (3) for a one-dimensional crystal of 
N unit cells exhibiting pure displacement disorder 
and containing two components coupled by nearest- 
neighbor interactions. The dependence of these sol- 
utions on the parameters is made explicit in this 
Appendix. 

First, consider the diffuse term, D. We intro- 
duce polar representations for t r Q =  r and BI = 
f i E !  + f 2 E 2  = % i.e 

r =  t exp (-ice) (B. la)  

with 

t= r - - [ (p -q)E+4pqcos  2½(~p1-~02)] ~/2, (B.lb) 

tan ce = p sin ~o,+q sin ~2 (B.lc) 
p cos ~ + q  cos  (4)2' 

and 

~/= g exp ( - i f l ) ,  (B.2a) 

with 

g=lyl=[(f , - f2)2+4f ,  f2cos 2 l(~01--q)2)] 1/2, (B.2b) 

and 
f~ sin ~o, +f2 sin ~o2 (B.2c) 

tan/3 fl cos ~o~ +f2 cos ~o2 

In (B.lb) and (B.2b), the phase difference (~o~- ~o2) 
may be written in terms of two spacings, dl and d2, 
in the form ~0~-q~:= (27r/d~)(d~-d2)l, where l 
measures the normal component of the momentum 
transfer in units of 27r/d~. Now, the diffuse term of 
(26) becomes 

D = (AA*)-~{1 + t24- A 2 - 2 t  cos ce +2g  cos fl 

-2gt cos ( / 3 -  ce)-2gA cos [fl - (~Pl + ~P2)]}, 

(B.3a) 

where A = 1 - p  - q is the negative of one of the eigen- 
values of P and A = 1 - r - A E I E 2  is the determinant 
of the matrix I - Q .  The denominator  of D is 

AA*= 1 + t 2 + A 2 - 2 t  cos ce -2A cos (~pl + ¢2) 

+2At cos (~1 + ~P2- ce)- (B.3b) 

Use of the polar representation given above for the 
variables occurring in H of (27) results in (30). 

APPENDIX C 

program pdrs (tty, tape 1 = tty) 
real pr(ns) 
complex p(ns), b(ns) 
pi = 4. * atan(1.) 
phi  = 2 . *  p i*  xl 
ph2 = 2. * pi * x2 
do 1 0 i = l , n s  
p(i) = cexp(cmplx(0.,phl)) * pr(i) 
+ cexp(cmplx(0.,ph2)) * ( 1 . -  pr(i)) 

10 continue 
b(1) = cmplx(1.,0.) 
sigma = 0. 
do 20 i =  1,ns 
b(1)-- b(1) * p(i) 

20 continue 
sigma -- real(b(1)) 
do 40 n = n s -  1,1,-1 
b(ns + 1 - n) -- b(ns - n) 
do 30 k =  1 , n s - n  
b(k) = b ( k ) / p ( k +  n) 
sigma = sigma + real(b(k)) 

30 continue 
b(ns 4-1 - n) -- b(ns 4-1 - n) /p(ns  - n) 
sigma = s igma+ real(b(ns 4-1 - n)) 

40 continue 
xr = ns 4-1.4- 2. * sigma 
stop 
end 

In this Fortran program pdrs, one must specify ns, 
the number of spacings; x l ,  the momentum transfer 
for a spacing of type 1; x2, the momentum transfer 
for a spacing of type 2; and the ns probabilities, pr(i) ,  
that spacing i is type 1. A description of the intrinsic 
functions used can be found in Appendix B of the 
Cray CFT77 reference manual,  no. SR-0018. xr is the 
desired X-ray scattering intensity for a position- 
dependent random stack as given between (32) and 
(33), assuming IV[ 2 equals unity. 
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Abstract 

The  recent ly  deve loped  m e t h o d  of  s t ructure  fac tor  
r e f inement  by mo lecu l a r  dynamics  with s imula t ed  
annea l i ng  [Bri inger ,  Kur iyan  & Karp lus  (1987). 
Science, 235, 458-460]  is tes ted on the 118 res idue 
p ro te in  m y o h e m e r y t h r i n .  A h ighly  ref ined s t ructure  
for  this p ro te in  at 1 .3 /1 .7  ,~ reso lu t ion  has recent ly  
been  pub l i shed  [Sheriff,  H e n d r i c k s o n  & Smith  (1987). 
J. Mol. Biol. 197, 273-296].  This  is c o m p a r e d  wi th  the 
results  o f  s imu la t ed  annea l i ng  re f inement  (with no  
manua l  in t e rven t ion)  s tar t ing f rom an ear l ier  mode l  

for the protein from a stage in the refinement when 
conventional least-squares methods could not 
improve  the  structure.  S imula ted  annea l i ng  reduces  
the R fac tor  at 2.5 A f rom 39 to 31%,  with un i fo rm  
t empera tu re  factors  and  no  solvent  molecu les  and  
with s imi lar  s te reochemis t ry ;  the c o m p a r a b l e  va lue  
for the m a n u a l l y  ref ined s t ructure  is 27 .9%.  Errors  
in b a c k b o n e  and  s idecha in  pos i t ions  up to abou t  3 
are cor rec ted  by the me thod .  The error  in b a c k b o n e  
pos i t ions  for  rough ly  85% of  the ini t ial  s t ructure  is 
wi th in  this  range,  and  in these regions  the  r.m.s. 
b a c k b o n e  er ror  is r educed  f rom 1.1 to 0.4 A. For  the 

0108-7673/89/060396-14503.00 © 1989 International Union of Crystallography 


